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Abstract Boundary element method (BEM) techniques for the prediction of cavitating or
ventilated flows around hydrofoils and propeller are summarized. Classical, supercavitating, and
ventilated blade section geometries are considered. Recent extensions which allow for the modeling
of cavities on either or both sides of the blade surface are presented. Numerical validation studies
and comparisons with experimental measurements are shown.

1. Introduction
Cavitation occurs when pressure drops below the saturated vapor pressure of
the liquid, consequently resulting in the formation of gas filled or gas and
vapor filled bubbles. A type of cavitation that is common on marine propulsors
is sheet cavitation. It is characterized by a “continuous” liquid/vapor interface
which is “attached” to the blade surface. Despite its undesirable nature, some
sheet (or other types of) cavitation often has to be accepted in order to maintain
efficiency. Thus, accurate prediction of cavitation is very crucial in the design
and analysis of marine propulsors.

Another common phenomena for marine propulsors is ventilation, which
occurs when surface air or exhaust gases are drawn into the lifting surface.
Examples of different types of high-speed hydrofoils are shown in Figure 1.
A photo of a supercavitating hydrofoil is shown in Figure 2. Note that in the
case of a ventilated hydrofoil, ventilation is forced by continuously injecting air
to the upper foil surface. In the case of a surface-piercing hydrofoil, ventilation
is a result of air drawn from the free surface. In both cases, the objective is to
increase the lift to drag ratio at high-speed operations. Note that the pressure in
the ventilated surface is constant, but equal to a value that is different from the
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vapor pressure. Thus, the ventilated cavity surface can be modeled like a sheet
cavity surface with a different prescribed pressure.

In general, cavitation is of unsteady nature (i.e. the cavity extent and volume
varies with time) due to either non-uniform inflow or unsteady body motion.
In this work, the cavity surface is determined in the framework of a moving
mixed boundary-value problem. For a given cavitation number, the extent and

Figure 1.
Schematic of different

types of high-speed
hydrofoils (Kinnas et al.,

2001)

Figure 2.
Photo of a

supercavitating
hydrofoil experiment
inside MIT’s Marine

Hydrodynamics Water
Tunnel, l=c < 3 (Kinnas

and Mazel, 1993)
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thickness of the cavity surface at a given time step is determined in an iterative
manner until both the prescribed pressure and flow tangency condition are
satisfied. Although the emphasis is on lifting surface, the method is in general,
enough to deal with arbitrary geometries (e.g. bluff bodies, bodies of revolution,
bubble dynamics).

Cavitating or free-streamline flows were first addressed in non-linear theory
via the hodograph technique introduced by Helmholtz, Kirchoff and Levi-Civita
(Birkhoff and Zarantonello, 1957). The cavity surface in steady flow was taken
as a streamline with constant pressure (thus, constant velocity). Due to the
difficulty of the hodograph technique in dealing with general body shapes, very
few cases have been treated analytically. The hodograph technique was
extended numerically to treat arbitrary geometries (Wu and Wang, 1964) and
later applied to the analysis of supercavitating hydrofoils in the presence of a
free surface (Furuya, 1975). This method, however, still could not treat general
three-dimensional geometries.

The linearized cavity theory was introduced by Tulin (1953) and quickly
became very popular, as evident by the vast amount of publications [1] in
which it has been used. Unfortunately, linearized theory tends to grossly
over-predict the thickness and extent of cavities for thick hydrofoils. It is
well-known that thick hydrofoils with round leading edge tends to delay
cavitation inception, consequently resulting in smaller cavities. In Kinnas
(1985, 1991), a leading edge correction was introduced to account for the defect
of linear theory at the round foil leading edge. The short cavity theory was then
developed by considering the cavitating flow as a small perturbation on the
non-linear fully wetted flow (Tulin and Hsu, 1980). Thus, the non-linear foil
thickness effects were included in this formulation. As the thickness of a
partially cavitating hydrofoil increased, the cavity size predicted by the short
cavity theory reduced substantially for fixed flow conditions.

Due to the above mentioned defect of linear cavity theory, various boundary
element methods (BEMs) have emerged. Pioneers in the application of BEM to
propeller flow problems include Gibson and Lewis (1973) and Hess and
Valarezo (1985) using velocity-based techniques, and Kerwin et al. (1987) and
Lee (1987) using potential-based techniques. In addition to the fundamental
difference between velocity- and potential-based methods, various
combinations of source, vortex, and dipole singularities were also employed.
A surface vorticity technique was employed by Uhlman (1987, 1989) to analyze
cavitating hydrofoils. They applied the exact boundary conditions on the
cavity and the foil surface, and an end-plate cavity termination model was
implemented. The reduction of the cavity size as the foil thickness increased
was predicted, but not as drastic as that predicted in Tulin and Hsu (1980). A
surface vorticity technique to deal with thick foil sections which employed an
open cavity model was developed in Yamaguchi and Kato (1983). Similar BEM
techniques were developed by Lemonnier and Rowe (1988) and Rowe and
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Blottiaux (1993). Potential-based BEMs were finally applied by Kinnas and
Fine (1991, 1993) and Lee et al. (1992) for the analysis of cavitating propeller
flows. It demonstrated much faster convergence characteristics than
velocity-based BEMs. In particular, the solution from the first non-linear
iteration where the cavity panels are placed on the foil surface beneath the
cavity was found to be very close to the converged non-linear solution (Kinnas
and Fine, 1990, 1993).

The potential-based BEM developed by Kinnas and Fine (1990, 1993) was
later extended to predict mixed cavitation patterns on the back of propeller
blades subjected to non-axisymmetric inflows (Fine and Kinnas, 1993b; Kinnas
and Fine, 1992). The time-dependent cavities were assumed to detach at the
blade leading edge, and a simplified wake alignment procedure (Greeley and
Kerwin, 1982) was applied. The method, named PROPCAV, was later extended
to predict midchord cavitation on either the back or the face of propeller blades
by Mueller and Kinnas (1999).

In the present work, PROPCAV is further extended to predict cavities on
either or both sides of the blade surface. The method is also capable of
predicting cavitating or ventilated flow around hydrofoils and propeller blades
with non-zero trailing edge thickness.

2. Formulation
The formulation for cavitating propellers is presented in Kinnas and Fine
(1993) and Young and Kinnas (2001, 2003), and is summarized here for the sake
of completeness. The formulation for 3D cavitating hydrofoils is very similar,
details of which are presented in Kinnas and Fine (1993).

Consider a cavitating propeller subjected to a general inflow wake
~qwðxs; ys; zsÞ [2], as shown in Figure 3. The inflow velocity, ~qin; with respect to
the propeller fixed coordinates ðx; y; zÞ; can be expressed as the sum of the
inflow wake velocity, ~qw; and the propeller’s angular velocity ~v; at a given
location ~x :

~qinðx; y; z; tÞ ¼ ~qwðx; r; uB 2 vtÞ þ ~v £ ~x ð1Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
; uB ¼ arctanðz=yÞ; and ~x ¼ ðx; y; zÞ: The resulting flow is

assumed to be incompressible and inviscid. Hence, the total velocity, ~q; can be
expressed in terms of ~qin and the perturbation potential, f:

~qðx; y; z; tÞ ¼ ~qinðx; y; z; tÞ þ 7fðx; y; z; tÞ ð2Þ

where f satisfies the Laplace’s equation in the fluid domain (i.e. 72f ¼ 0). Note
that the propeller fixed coordinates system is used in analyzing the flow.

2.1 The boundary integral equation
The perturbation potential, f, at every point p on the combined wetted blade
and cavity surface, SWBðtÞ< SCðtÞ; must satisfy Green’s third identity:
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2pfpðtÞ ¼

ZZ
SWBðtÞ<SCðtÞ

fqðtÞ
›Gðp; qÞ

›nqðtÞ
2 Gð p; qÞ

›fqðtÞ

›nqðtÞ

� �
dS

þ

ZZ
SWðtÞ

Dfðrq; uq; tÞ
›Gð p; qÞ

›nqðtÞ
dS; p [ SWBðtÞ< SCðtÞ

ð3Þ

where the subscript q corresponds to the variable point in the integration.
Gð p; qÞ ¼ 1=Rð p; qÞ is Green’s function in an unbounded 3D fluid domain, with
R( p;q) being the distance between the points p and q. ~nq is the unit vector
normal to the integration surface, with the positive direction pointing into the
fluid domain. SWB(t) denotes the wetted blade and hub surfaces, and SC(t)
denotes the cavitating surfaces.

The wake surface, SW(t), is assumed to have zero thickness. The geometry of
the wake surface is determined by satisfying the force-free wake condition,
which requires zero pressure jump across the wake sheet. In this work, the
wake is aligned with the circumferentially averaged inflow using a iterative
lifting surface method developed by Greeley and Kerwin (1982). As stated by
Greeley and Kerwin (1982), this method “artificially” suppresses the wake
roll-up. Recently, a fully unsteady wake alignment method, including wake
roll-up and developed tip vortex cavity, is developed for propellers in
non-axisymmetric inflows (Lee and Kinnas, 2001, 2003).

Figure 3.
Propeller subjected to a
general inflow wake. The
propeller fixed (x, y, z)
and ship fixed (xs, ys, zs)
coordinate systems are
shown
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The dipole strength Dfðr; u; tÞ in the wake is convected along the assumed
wake model with angular speed, v:

Dfðr; u; tÞ ¼ DfT rT; t 2
u2uT

v

� �
; t $ u2uT

v

Dfðr; u; tÞ ¼ DfSðrTÞ; t , u2uT

v

ð4Þ

where (r, u) are the cylindrical coordinates at any point in the trailing wake
surface (SW), and (rT, uT) are trailing edge coordinates of the corresponding
streamline. Df S is the steady flow potential jump in the wake when the
propeller is subject to the circumferentially averaged flow.

The value of the dipole strength, DfTðrT; tÞ; at the trailing edge of the blade
at radius rT and time t, is given by Morino’s Kutta condition (Morino and Kuo,
1974):

DfTðrT; tÞ ¼ fþ
T ðrT; tÞ2 f2

T ðrT; tÞ ð5Þ

wherefþ
T ðrT; tÞ andf2

T ðrT; tÞ are the values of the potential at the upper (suction
side) and lower (pressure side) blade trailing edge, respectively, at time t.

Recently, an iterative pressure Kutta condition (Kinnas and Hsin, 1992) is
applied instead for the analysis of unsteady fully wetted and cavitating
propellers. The iterative pressure Kutta condition modifies DfTðrT; tÞ from
that of Morino to achieve equality of pressures at both sides of the trailing edge
everywhere on the blade (Young et al., 2001).

Note that equation (3) is a Fredholm singular integral equation of the
second kind. It should be applied on the “exact” cavity surface SC, as shown
on the left of Figure 4. However, the cavity surface is not known and has to
be determined as part of the solution. In this work, an approximated cavity

Figure 4.
Left: definition of the
exact surface. Right:

definition of the
approximated cavity
surface (Young and

Kinnas, 2001)
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surface, shown on the right of Figure 4, is used. The approximated cavity
surface is comprised of the blade surface underneath the cavity on the blade,
SCB(t), and the portion of the wake surface which is overlapped by the
cavity, SCW(t). The justification for using the approximated cavity surface is
based on the fast convergence characteristic of the potential-based BEM,
which is demonstrated in Figure 5. In the fully non-linear scheme, cavity
panels are updated at every iteration. In the present (hybrid) scheme, cavity
panels are placed on the approximated cavity surface, which is equivalent to
the first iteration of the fully non-linear scheme. As shown in Figure 5, the
hybrid scheme predicted the cavity shape within reasonable accuracy.
Additional validation studies for the hybrid scheme were presented in Fine
and Kinnas (1993a).

Using the approximated cavity surface, equation (3) may be decomposed
into a summation of integrals over the blade surface, SB ; SCBðtÞ þ SWBðtÞ;
and the portion of the wake surface which is overlapped by the cavity, SCW(t),
as shown in Figure 4:

Figure 5.
Comparison of predicted
cavity shapes from the
fully non-linear (solid)
and the present hybrid
(solid with dots) scheme
for NACA16004 at
a ¼ 68. a/s ¼ 0.44
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p [ SB : 2pfpðtÞ ¼ 0

p [ SCWðtÞ : 4pf^
p ðtÞ ¼ ^2pDfpðtÞ

8<
:

9=
;

þ

ZZ
SB

fqðtÞ
›Gð p; qÞ

›nq
2 Gð p; qÞ

›fqðtÞ

›nq

� �
dS

2

ZZ
SCWðtÞ

›fþ

›n
ðtÞ2

›f2

›n
ðtÞ

� �
Gð p; qÞ dS

þ

ZZ
SCWðtÞ<SWðtÞ

Dfðrq; uq; tÞ
›Gð p; qÞ

›nq
dS

ð6Þ

where the superscripts “+” and “2” denote the upper and lower wake surface,
respectively.

2.2 Boundary conditions
Equation (6) implies that the perturbation potential (fp) can be expressed as:
continuous source (G) and dipole ð›G=›nÞ distributions on the wetted blade
(SWB) and cavity ðSCB < SCWÞ surfaces, and continuous dipole distribution on
the wake surface, SW. Thus, fp can be uniquely determined by satisfying the
following boundary conditions.

2.2.1 Kinematic boundary condition on wetted blade and hub surfaces. The
kinematic boundary condition requires the flow to be tangent to the wetted
blade and hub surface, which forms a Neumann-type boundary condition for
›f=›n :

›f

›n
¼ 2~qin · ~n: ð7Þ

2.2.2 Dynamic boundary condition on cavitating surfaces. The dynamic
boundary condition on the cavitating blade and wake surfaces requires the
pressure everywhere on the cavity to be constant and equal to the vapor
pressure, Pv. By applying Bernoulli’s equation, the total cavity velocity, ~qc; can
be expressed as follows:

j~qcj
2
¼ n2D 2sn þ j~qwj

2
þ v2r 2 2 2gys 2 2

›f

›t
ð8Þ

where sn ; ðPo 2 PvÞ=ððr=2Þn2D 2Þ is the cavitation number; r is the fluid
density and r is the distance from the axis of rotation. Po is the pressure far
upstream on the shaft axis; g is the acceleration of gravity and ys is the ship
fixed coordinate, shown in Figure 3. n ¼ v=2p and D are the propeller
rotational frequency and diameter, respectively.
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The total cavity velocity can also be expressed in terms of the local
derivatives along the s (chordwise), v (spanwise), and n (normal) grid directions:

~qc ¼
V s½~s 2 ð~s · ~vÞ~v� þ Vv½~v 2 ð~s · ~vÞ~s�

k~s £ ~vk
2

þ ðV nÞ~n ð9Þ

where ~s; ~v; and ~n denote the unit vectors along the non-orthogonal curvilinear
coordinates s, v, and n, respectively. The total velocities on the local coordinates
(Vs, Vv, Vn) are defined as follows:

V s ;
›f

›s
þ ~qin ·~s; Vv ;

›f

›v
þ ~qin · ~v; V n ;

›f

›n
þ ~qin · ~n ð10Þ

Note that if s, v, and n were located on the “exact” cavity surface, then the total
normal velocity, Vn, would be zero. However, this is not the case since the
cavity surface is approximated with the blade surface beneath the cavity and
the wake surface overlapped by the cavity. Although Vn may not be exactly
zero on the approximated cavity surface, it is small enough to be neglected in
the dynamic boundary condition (Fine, 1992).

Equations (8) and (9) can be integrated to form a quadratic equation in terms
of the unknown chordwise perturbation velocity ›f/›s. By selecting the root
which corresponds to the cavity velocity vectors that point downstream, the
following expression can be derived:

›f

›s
¼ 2~qin · ~s þ Vv coscþ sinc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~qcj

2
2 V 2

v

q
ð11Þ

where c is the angle between s and v directions, as shown in Figure 4. Equation
(11) can then be integrated to form a Dirichlet type boundary condition for f.

It should be noted that the terms ›f=›t and ›f=›v inside j~qcj and Vv in
equation (11) are also unknown and are determined in an iterative manner
(Fine, 1992; Kinnas and Fine, 1993). Initially, the total flow velocity is assumed
to be tangent to the s coordinate, i.e. ›f=›v ¼ j~qcjð~s · ~vÞ2 ~qin · ~v: In subsequent
iterations, ›f=›v is calculated via a second order central difference scheme of
the potential in the ~v direction. Iterations are carried out until the change in
›f=›v is less than a prescribed tolerance. ›f=›t is assumed to be zero in the
first two propeller revolutions. In subsequent revolutions, ›f=›t is calculated
via a second order moving least square method (Tabbara et al., 1994) using the
previous f when the key blade was in the same angular position.

On the cavitating wake surface, the coordinate s is assumed to follow the
streamlines. It was found that the crossflow term (›=›v) in the cavitating wake
region had a very small effect on the solution (Fine, 1992; Fine and Kinnas,
1993b). Thus, the total cross flow velocity is assumed to be small, which
renders the following expression on the cavitating wake surface:
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›f

›s
¼ 2~qin ·~s þ j~qcj: ð12Þ

2.2.3 Kinematic boundary condition on cavitating surfaces. The kinematic
boundary condition requires that the total velocity normal to the cavity surface
to be zero:

D

Dt
ðn 2 hðs; v; tÞÞ ¼

›

›t
þ ~qcðx; y; z; tÞ ·7

� �
ðn 2 hðs; v; tÞÞ ¼ 0 ð13Þ

where n and h are the curvilinear coordinate and cavity thickness normal to the
blade surface, respectively.

Substituting equation (9) into equation (13) yields the following partial
differential equation for h on the blade (Kinnas and Fine, 1993):

›h

›s

�
V s 2 coscV v

�
þ

›h

›v

�
Vv 2 coscV s

�
¼ sin2c V n 2

›h

›t

� �
ð14Þ

Assuming again that the spanwise crossflow velocity on the wake surface is
small, the kinematic boundary condition reduces to the following equation for
the cavity thickness (hw) in the wake:

›fþ

›n
2

›f2

›n

� �
2

›hw

›t
¼ j~qcj

›hw

›s
ð15Þ

Note that hw in equation (15) is defined normal to the wake surface. In addition,
the quantity hw at the blade trailing edge is determined by interpolating the
upper and/or lower cavity surface over the blade and computing its normal
offset from the wake sheet.

2.2.4 Cavity closure condition. The extent of the unsteady cavity is unknown
and has to be determined as part of the solution. The cavity length at each
radius r and time t is given by the function l(r, t). For a given cavitation number,
sn, the cavity planform, l(r, t), must satisfy the following condition:

dðlðr; tÞ; r;snÞ ¼ 0 ð16Þ

where d is the thickness of the cavity trailing edge. Equation (16) requires that
the cavity closes at its trailing edge. This requirement is the basis of a
Newton-Raphson iterative method that is used to find the cavity planform
(Kinnas and Fine, 1993).

2.2.5 Cavity detachment condition. The cavity detachment locations are
determined iteratively by satisfying the Villat-Brillouin smooth detachment
condition (Brillouin, 1911; Villat, 1914). This condition requires that the cavities
do not intersect the blade at its leading edge, and the pressure upstream of the
cavities to be greater than the vapor pressure. It should be noted that the
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current formulation assumes the flow to be inviscid. It is widely known that
viscosity affects the cavity detachment, as well as the extent and thickness of
the cavity. However, investigations by Kinnas et al. (1994) concluded that the
effect of viscosity on the predicted cavity extent and volume is negligible for
the case of supercavitation, as shown in Figure 6.

2.3 Numerical aspects
The unsteady cavity problem is solved by inverting equation (6) subject to
equations (4), (5), (7), (11), (12) and (16), and the cavity detachment condition.
The integral surfaces are approximated with hyperboloidal panels (Kinnas and
Hsin, 1992) on which constant strength dipoles and sources are distributed. The
present low-order BEM approach is an extension of those of Kerwin et al. (1987)

Figure 6.
Supercavitating
hydrofoil in inviscid and
viscous flow at
Re ¼ 2 £ 107. Cavity
shape and boundary
layer displacement
thickness (top); pressure
distributions (bottom)
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and Kinnas and Hsin (1992), in the cases of steady and unsteady non-cavitating
(also called wetted) flows around propeller blades, respectively. The low-order
method has been applied in the cases of blades with thin sections and/or
extreme skew, and the results have been found to converge quickly with
number of panels (Hsin, 1990, Hsin et al., 1991, Kerwin et al., 1987; Kinnas and
Hsin, 1992, 1994, Kinnas et al., 1993, Lee, 1987). Equation (6) is applied at the
panel centroids in order to determine the potentials at each panel. The problem
is solved in the time domain with constant time step size Dt.

The numerical implementation is described in detail in Kinnas and Fine
(1993). In brief, for a given cavity planform, Green’s formula is solved with
respect to unknown f on the wetted blade and hub surfaces, and unknown
›f=›n on the cavitating surfaces. The cavity heights on the blade and the wake
are computed by numerically differentiating equations (14) and (15) with a
second order central finite difference method. At each time step,
Newton-Raphson iterations are performed to determine the cavity lengths
which satisfy the cavity closure condition equation (16) for the given guess of
cavity detachment locations. An example of the iteration procedure performed
within each time step on a cavitating foil section is shown on the left part of
Figure 7. At the end of every time step, the cavity detachment locations are
adjusted via the smooth detachment condition, as explained in the earlier
section. An example of the convergence of cavity shape with number of time
steps on a foil section is also shown in Figure 7. It should be noted that in the
case of steady inflow, only one time step is performed per propeller revolution,
and that the cavity detachment locations are adjusted in every time step. The
converged cavity planform and cavitating pressure distributions for a 3D
hydrofoil is shown on the right part of Figure 7. Note that the current method is
able to search for cavities on both sides of the foil surface. In addition, note the
influence of cavity detachment locations on the predicted cavity shape and
pressure distribution.

In order to save the computational time, the solution at each time step is only
obtained for the key blade in the case of a cavitating propeller. The influence of
each of the other blades is accounted for in a progressive manner by using the
solution from an earlier time step when the key blade was in the position of that
blade.

A very crucial issue in the numerical implementation was found to be the
treatment of panels which were intersected by the cavity trailing edge. In order
to avoid recomputing influence coefficients, a split panel technique (Fine, 1992;
Kinnas and Fine, 1993) was devised. The intersected panel is treated as one
panel with f and ›f=›n determined as weighted averages of the values on the
wetted and the cavitating part of the panel. This technique, as depicted in
Figure 8, provided substantial savings on computing time since the same panel
discretization can handle arbitrary cavity planforms.
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3. Supercavitating propellers and hydrofoils
The speed limit for classical fully submerged propellers is approximately 20-25
knots. They do not perform well at higher speeds because considerable amount
of cavitation is unavoidable. Supercavitating propellers, on the other hand,
operate in fully cavitating conditions. The term supercavity refers to a cavity
that is longer than the chord length of the blade. Supercavitating propellers
tend to have very sharp leading edges and very blunt trailing edges. They are
more efficient than classical non-cavitating or partially cavitating propellers
because of:

. reduction in viscous drag due to the un-wetted suction side as a result of
the supercavity, and

. reduction in noise and blade surface erosion as a result of smaller volume
change and cavities that collapse downstream of the blade trailing edge.

However, supercavitating blade sections are difficult to model due to the
unknown physics following the blunt trailing edge. Experimental evidence
shows that the separated zone behind the thick blade trailing edge forms a
closed cavity that separates from the practically ideal irrotational flow around

Figure 7.
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Figure 8.
The split panel technique
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a supercavitating blade section (Russel, 1958). Furthermore, the pressure
within the separated zone (also called the base pressure) can be assumed to be
uniform (Riabouchinsky, 1926; Tulin, 1953). However, the extent of the
separated zone and the base pressure are unknown.

In this work, the base pressure is assumed to be constant and equal to the
vapor pressure. Thus, the extent and thickness of the separated region can be
solved like an additional cavitation bubble. This assumption is valid in the case
of supercavitation. In the case when part of the blade is fully wetted or partially
cavitating, this assumption should still be a reasonable approximation since
the pressure change along the blade trailing edge should be smooth. To avoid
“openness” at the blade trailing edge, a small initial closing zone, shown in
Figure 9, is introduced. The precise geometry of the initial closing zone is not
important, as long as it is inside the separated region and its trailing edge lies
on the aligned wake sheet. The method is modified so that it treats the original
blade and the initial closing zone as one solid body, both of which do not
change with time. The size and the extent of the cavities and the separated
region are allowed to change with time, and are determined as part of the
solution. The treatment of non-zero trailing edge sections in fully wetted,
partially cavitating, and supercavitating conditions are depicted in Figure 9.
Cavitation patterns that can be predicted by the present method are shown in
Figure 10. Details of the formulation and validation studies are given in Young
and Kinnas (2002a, 2003). It should be noted that the current method can also

Figure 9.
Treatment of non-zero
trailing edge sections in
fully wetted, partially
cavitating, and
supercavitating
conditions
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be applied to ventilated hydrofoils by replacing the vapor pressure with the
ventilation pressure.

4. Numerical validation
4.1 Convergence with number of panels
In order to validate the method, extensive parametric studies were performed
for various propeller (Young and Kinnas, 2001, 2002b, 2003) and hydrofoil
geometries (Kinnas and Fine, 1993, Young and Kinnas, 2002a) in steady and
unsteady flow conditions. For the sake of completeness, convergence studies of
the method using a 3D hydrofoil is shown in this section. The delta shape
hydrofoil, shown in Figure 11, has a constant chord to span ratio of 1:4. The
maximum sweep to span ratio is 0.2. The foil has a linear thickness distribution
with a maximum thickness to chord ratio of 0.0698, and a parabolic camber
distribution with a maximum camber to chord ratio of 0.03. The flow
conditions are as follows: sv ¼ ðPo 2 PvÞ=

�
r=2V 2

A

�
¼ 0:3 and a ¼ 48: For the

analysis of hydrofoils, the symbols VA and a denote the inflow velocity and the
angle of attack, respectively. Comparisons of the predicted cavity planforms for
three different grid discretization are shown in Figure 11.

4.2 Multiplicity of solutions
It is well-known that some cavitation numbers produce multiple solutions,
which can be confirmed from observed instabilities on cavity extents during

Figure 10.
Cavitation patterns that
can be predicted by the

present method
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2D and 3D experiments. The current method is able to predict multiple
solutions in 3D (Kinnas and Fine, 1992, 1993), as shown in Figure 12. The
hydrofoil is the same as described Section 4.1, but it has a rectangular
planform and a ¼ 38: Note that at sv ¼ 0:385; two cavity planforms are
predicted, one partial cavity and one mixed cavity (slightly supercavity at
midspan). The partial cavity is produced by applying an initial guess of
cavity length which equals to 20 percent of the chord length, and the mixed
cavity is produced by applying an initial guess of cavity length which equals
to 120 percent of the chord length. The cavity length (non-dimensionalized by
the chord length) at midchord versus a/sv is shown in Figure 13. It is worth
noting that Figure 13 carries striking similarity to the well-known
characteristic curve for a 2D cavitating flat plate, which is not presented in
this paper.

4.3 Sample run with face and back cavitation
In order to show the method’s ability to search for simultaneous face and
back cavitation, results from a sample run using the same hydrofoil is
shown in this section. The flow conditions for the hydrofoil are as follows:
sv ¼ 0:085 and a ¼ 0:38: As shown in Figure 14, there is midchord
supercavity on the suction side and leading edge partial cavitation on the
pressure side. The corresponding pressure distributions along the spanwise
direction are shown in Figure 15. Note that the partial cavity on the face
side significantly alters the pressure distribution, which in turn alters the
force acting on the hydrofoil. Thus, it is crucial to search for cavities on both
sides of the blade surface, and to determine the correct cavity detachment
locations.

Figure 11.
Convergence of predicted
cavity planform with
number of panels.
Maximum sweep to span
ratio ¼ 0.2, sv¼0.3 and
a ¼ 48
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5. Experimental validations
5.1 Highly skewed propeller
In order to validate the panel method, numerical predictions are compared with
experimental measurements for propeller 4383, which is a five-bladed fully
submerged propeller with a high skew angle of 728. The propeller geometry is
given in Boswell (1971) and Cumming et al. (1972), and is shown in Figure 16.
Open water (non-cavitating) performance was measured at the NSRDC deep
water basin, and are compared with numerical predictions by the current
method in Figure 16. It should be noted that in the numerical analysis, a friction
coefficient that corresponds to the blade Reynolds number was applied on the
wetted portion of the blade.

Cavitation tests for propeller 4383 were conducted in a 24 in. cavitation
tunnel at NSRDC (Boswell, 1971). Comparisons of predicted and measured

Figure 12.
Multiple solutions in 3D

for sv¼0.385, a ¼ 38 and
70 £ 30 panels
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thrust ðKT ¼ T=rn2D 4Þ and torque ðKQ ¼ Q=rn2D 5Þ coefficients as a function
of advance ratio ð JA ¼ V A=nDÞ and cavitation number ðsv ¼ ðPo 2
PvÞ=ð0:5rV 2

AÞÞ are shown in Figure 17. For the analysis of propeller flows,
the symbol VA denotes the advance speed of the propeller in open water.
Examples of the predicted cavity planforms for sv ¼ 3:0 and JA ¼ 0:5-0:7 are
shown in Figure 18. As shown in Figures 16 and 17, the numerical predictions
compared well with experimental measurements. It should be noted that the
comparison for sv ¼ 1:0 shown in Figure 17 has been improved considerably

Figure 13.
Cavity length at midspan
vs a/sv for a 3D
hydrofoil. a¼38. 70 £ 30
panels

Figure 14.
Outline of 3D hydrofoil
and predicted cavity
planform. sv¼0.085.
a ¼ 0.38. 60 £ 20 panels
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Figure 15.
Predicted cavitating

pressure distributions
along the spanwise

direction. sv¼0.085.
a ¼ 0.38. 60 £ 20 panels

Figure 16.
Predicted and measured

open water
(non-cavitating)

performance of a highly
skewed propeller 4383.

Also shown is the
discretized propeller

geometry

Modeling of
cavitating or

ventilated flows

691



by incorporating a semi-empirical adjustment which alters the cavity
detachment algorithm to account for viscous and surface tension effects. A
description of this semi-empirical adjustment is given in the discussion section
of Kinnas et al. (2002).

5.2 Supercavitating propeller
To validate the treatment of supercavitating propellers, the predicted force
coefficients are compared with experimental measurements (Matsuda et al.,
1994) for a supercavitating propeller. The test geometry is M.P.No.345 (SRI),
which is designed using SSPA charts under the following conditions: JA ¼
1:10; sv ¼ 0:40; and KT ¼ 0:160: The discretized propeller geometry is shown
in Figure 19. Comparisons of the predicted and measured thrust, torque, and

Figure 17.
Predicted and measured
thrust (KT) and torque
(KQ) coefficients as a
function of cavitation
number (sv) and advance
ratio ( JA). Propeller 4383
Source: from the
discussion section of
Kinnas et al. (2002)

Figure 18.
Predicted cavity
planforms for sv¼3.0
and JA¼0.5-0.7. Propeller
4383
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efficiency ðho ¼ KT=KQ JA=2pÞ are shown in Figure 20. As evident in the
figure, the numerical predictions agree well with the experimental
measurements. It should be noted that extensive parametric studies of the
method were performed for this propeller, and are presented in Young and
Kinnas (2003).

Figure 19.
Left: discretized propeller

geometry. Right: blade
section and initial closing
zone geometry. Propeller

SRI. Uniform inflow

Figure 20.
Comparison of the

predicted versus
measured KT, KQ, and ho

for different advance
coefficients. Propeller

SRI. Uniform inflow
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6. Conclusions
BEM-based techniques for the prediction of cavitating or ventilated flows
around hydrofoils and propellers were described. A recent potential-based
BEM that is capable of predicting simultaneous (or alternating) face and back
cavitation on classical, supercavitating, and ventilated blade section geometries
was presented. Extensive parametric studies and experimental validations
have been performed for various propeller and hydrofoil geometries, some of
which were presented in Young and Kinnas (2001, 2002b, 2003).

Current efforts include:

(1) modeling of cavitation on multi-component propulsor systems (Kinnas
et al., 2001, 2002);

(2) modeling of surface-piercing propellers (Young, 2002; Young and
Kinnas, 2001); and

(3) modeling of developed tip vortex cavity (Lee, 2002; Lee and Kinnas,
2001).

Notes

1. An extended list of which may be found in Kinnas (1991) and Tulin and Hsu (1980).

2. ~qw is assumed to be the effective wake, i.e. it includes the interaction between the vorticity in
the inflow and the propeller (Choi, 2000; Kinnas et al., 2000).
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